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What is Kipus?





Research context

•  Energymon: Development of wireless sensor network based Decision 
Support System to monitor building energy performance. IEEE, 2011, P. 
Szems et al. (MFKK Inv. and Research Centre Hungary). 

•  A multi-objective approach for optimal prioritization of energy efficiency 
measures in buildings: Model, software and case studies. M. Karmellos 
et al. 2015. Edinburgh, Athens

•  Energy Audit Tool Overview , CBEI, 2013, R. Leicht, et al. Inverse 
modeling using previous data, estimates building parameters.

•  Hybrid approach to energy modeling. LBNL, DOE, 2014-2016. Hong, T. 
It combines physics & measured data. New feature for EnergyPlus V8.6



Market context
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Figure 4:  Alignment of Energy Auditing in the Facility Lifecycle 

1.3 Work Scope  
The Energy Audit tool is not a single software or device, but is developed as a tool-chain of data 

collection and analysis components to allow improved reliability of information flow while maintaining 

flexibility in the process.  This report demonstrates the use of the tools and workflow analysis for the 

audit process and data requirements that were integrated using the Navy Yard campus as a case study.  

In Year 2, the team refined the analytical tools and cross compared the potential tool-chain integration 

based on the Navy Yard facility data collected.  The team also defined the energy audit process and 

downstream data requirement alignment with the most commonly used energy modeling tools.   In 

addition, an initial data collection interface, using the iOS platform, was developed to streamline the 

field data collection process and complement the tool-chain.   

1.4 Development Methods  
The tool-chain was developed and refined using the following methods:  

 
• Literature review and content analysis techniques were used to identify and compare the 

software data requirements;  

• An industry workshop was used to develop the process model and observational studies were 

performed to validate the defined processes;  

• Case study analysis of the Navy Yard campus and specific audits of select buildings.  

Investment	vary	
Opera>on	vary	
New	tecnologies…	

CBEI,	2013	

Time-consuming	
Missing	data	
Accuracy	
Divergent	ECMs	

Must	be		
con>nuous	
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Figure 1:  Venn diagram of recommended ECMs from three separate analyses by Companies A, B, and C. 
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Figure 3:  Installation costs and yearly savings for ECM packages proposed by 
Companies A, B, and C. 

Figure 2:  Installation costs and yearly savings for ECM packages proposed by 
Companies A, B, and C. 

0

100000

200000

300000

400000

500000

600000

Install Cost Yearly 
Total 

Savings

Install Cost Yearly 
Total 

Savings

Install Cost Yearly 
Total 

Savings

A B C

$

  

 

• Condensing 
Boiler 

• OA economizers 
• CFL Lighting 

Upgrade 

A B 

C 

• LED Exit 
signs 

• Occupancy 
Sensors 

• Weatherization

• Plug Load Controls 
• Supply Air Temperature  

Reset 
• Insulate Hot Water Tank  
• Lighting Controls - Dimmers 
• Occupancy Control for Refrig 

Vending Machines 
• Demand Controlled 

Ventilation 

• Remove exhaust and 
rebalance 

• Upgrade BMS 
• Instantaneous/On-

demand Water Heaters 
• Solar PV 
• Replace DX Cooling 

Systems 

• Exhaust Air Energy 
Recovery 

• Daylight Harvesting 
• Outdoor Security Lighting 
• Building Pressurization 

CBEI,	2013	



Problem statement

Building	energy	modelling:	
	

•  “A	±30%	proposi>on	at	best…	

•  …Not	accurate	enough	to	support	investment…		

•  …Can’t	predict	energy	use…“	
	 	 	 	 	 	 	 	 	 		

	
	
	
	
	
	
	
	
	
	

	 	 	 	 	 	 	 	 	 	Source:	U.S.	DOE	
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Problem: BEM’s Image & Credibility

Predictive BEM is hard Ímany uncertain inputs (occupancy, infiltration, etc.)
• That’s okÍmost BEM use-cases are comparative & control for uncertainty
• Actually, it’s not ok Í few people understand this distinction
• That ASHRAE Standard 140 testing is analytical & comparative doesn’t help matters

– 140 accomplishes quite a bit given that it doesn’t have empirical data sets!

As-designed vs. 
as-built/operated

Accuracy
Envelope

“A ±30% proposition at best”

“Have to discount savings by 2X”

“Details are right, big picture is wrong”

“Not accurate enough to support investment”

“Can’t predict energy use, what good is it?”

“All models are wrong, some are useful” –G. Box



Our approach

A tool that:

•  serves for a cost-effective retrofitting assessment and supports 
continuous investment decision-making. 

•  uses data from sensors to sink audit costs and to improve the 
accuracy of building energy assessment. 

•  allows continuous modeling for continuous improvement

The tool uses an inverse optimization algorithm that:

•  approximates the thermodynamical behavior by means of a 
linear function (linear factors) 

•  uses parameters and geometry obtained onsite or from 
drawings

•  determines the best factors for building modeling

•  uses proxy variables (CO2, person counter, humidity, etc.) for 
estimating hard to read variables e.g. ventilation and 
infiltration.



Buildings	por^olio:	
-Parameters	and	geometry	
-Sensors	installa>on	

ECM	assessment	
(requires	libraries)	
-Building	envelope	
-Water	use	
	

Sensors	data:	
-Energy	consump>on	
-Opera>on	variables	

Factors	op>miza>on	

Our approach

Infraestructure	manager:	
-Retrofit	ranking	
-Con>nuos	accurate	assessment	
		

Model	construc>on	&	
op>miza>on	



The algorithm

Main Elements of the Proposed Prediction-Based Simulation Approach

Part I: Definition of Energy Consumption Formula Let us assume that the air conditioning energy
requirements of a certain building (during a given time period t, e.g., a day) depends on a collection of
factors, say I, comprised by: building structural characteristics (B), such as walls, windows, etc.; weather or
climatological factors (W ), such as temperature, radiation, etc.; and factors associated to the users behavior
patterns (U), such as average number of persons inside the building, comfort temperature, etc. It will be
assumed that I = B [ W [ U . Additionally, we will assume that the building is divided into Z di↵erent
zones; moreover, we will consider four possible orientations of the building exterior walls (J = {N,S,E,O}).

One of the key paradigms of our methodology is that it is possible to approximate the thermodynamical
behavior of a building by means of a linear function given by the di↵erent energy gain and losses due internal
and external exchanges. Such linear function is characterized by linear multipliers, embodied by a vector �.
The core of the proposed approach corresponds to compute the values of these multipliers in order to fit the
proposed formula using real (or professionally simulated) energy consumption data.

In our approach, the energy consumption Qz,t due to air conditioning in a given zone z 2 Z during a
period t, is given by

Qz,t = QTrans

z,t +QVent

z,t +QRad

z,t �QSol

z,t �QInt

z,t +QLosses

z,t . (1)

In this expression, QTrans

z,t corresponds to the transmission energy losses and it is given by

QTrans

z,t = �1
z ⇥

X

i2Bz

Ai ⇥ Ui ⇥ Fxi ⇥�Ti,

, where Bz corresponds to the building envelop elements associated with zone z. Likewise, QVent

z,t represents
to the energy loses due to ventilation; more precisely,

QVent

z,t = �2
z ⇥ 1

CO2z

⇥ 1

pintz

⇥ npers
z,t ⇥ Vz ⇥ 0.34⇥�T vent

z ,

where it is assumed that the number of air renovation during period t, Nz,t, verifies Nz,t ⇡ 1
CO

2z
⇥ 1

pint

z
⇥npers

z .
The losses due to radiation on opaque surfaces, QRad

z,t , are given by

QRad

z,t =
X

j2J

Rse
j,z ⇥A00

jz ⇥ Ujz ⇥
�
�7
jz ⇥�T rad

z � �8
jz ⇥ Ih

�
.

Complementary, the gains due to solar radiation on transparent surfaces can be calculated as

QSol

z,t =
X

j2J

�6
jz ⇥A0

jz ⇥ Ih.

The internal gains, QInt

z,t, are defined as

QInt

z,t = �3
z ⇥ npers

z,t + �4
z ⇥Qil

z + �5
z ⇥Qeq

z .

Finally, the internal losses, QLosses

z,t , are defined simply by

QLosses

z,t = �9
z .

In Tables 1 and 2 we define all the terms involved in the expressions presented above.

1

Hea$ng	and	cooling	energy	depends	on:		

•  building	parameters	B	(input)	

•  weather	W	(measured)	

•  user	behavior	U	(measured)	
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The algorithm

Part II: Finding a good approxiation of Q In order to describe the optimization-based approach for
adjusting the � factors (which are crucial for the functioning of the whole framework), it is necessary to state
how to assess the accuracy of a given configuration of such factors. In the proposed scheme, two measures
are considered for this purpose.

For a given interval of time P (e.g., a 3-months season), let QP = (Q1, . . . ,Qz, . . . ,QZ) be a
collection of hourly energy consumption readings for each zone of the building, and let �T P =
(�T 1, . . . ,�T z, . . . ,�TZ) be a collection of hourly temperature di↵erence readings for each zone of the
building with respect to corresponding adjacent zones. Such readings are made during the interval of time P ,
and are divided into M periods. These readings can be obtained by meters, sensors or any other measuring
devise; alternatively, they might correspond to the output of a simulation performed in a software such as
TAS. Now, let Q0

P (�
0) be the energy consumption values computed by the proposed formula and using a

particular factor setting �01. The global error induced by �0 is given by

✏1(�
0) =

���
PM

t=1

PZ
z=1 Q

0
z,t �

PM
t=1

PZ
z=1 Qz,t

���
PM

t=1

PZ
z=1 Qz,t

,

i.e., the relative di↵erence between the real total energy consumption (
PM

t=1

PZ
z=1 Qz,t), and the total energy

consumption associated to �0 (
PM

t=1

PZ
z=1 Q

0
z,t). The value of ✏1(�

0) disregards the influence of having non-
homogeneous zones. Therefore, an alternative way of measuring the precision associated to �0 can be defined
a the following weighted error,

✏2(�
0) =

ZX

z=1

Qz

Q

MX

t=1

 ��Q0
z,t �Qz,t

��
Qz,t

!
,

where Q corresponds to the total energy consumption of the building, while Qz is the energy consumption of
zone z; according to the measurements in both cases. A particular vector �0 might induce a very small error
✏1(�

0) but a high error ✏2(�), or vice-versa. The goal of the algorithm is to find a vector �⇤ that provides a
good balance between ✏1(�

⇤) and ✏2(�
⇤). An outline of the adjusting algorithm is presented below.

1. Set convenient ranges for the values of the � factors. For instance, �z
1

2 [1, 10], 8z 2 Z, while
�z

3

2 [0, 1], 8z 2 Z. Note that this initial ranges are obtained by preliminary tests.

2. For a given interval of time P , randomly generate R di↵erent configurations (�1, . . . ,�r, . . . ,�R), so
that all zones receive the same factors. Calculate the total energy consumption associated to each of
these configurations, i.e., Q0

P (�
r) for each r 2 {1, . . . , R}.

3. For each �r, r 2 {1, . . . , R}, calculate ✏1(�r). Find �r⇤ = argminr2{1,...,R} ✏1(�r), i.e., the vector (or
vectors) inducing the minimum global error

4. Iteratively attempt to improve �r⇤ by performing (small) random perturbations on the values of the
parameters �1, �2, and �62. Such perturbations are performed in the lexicographic order �1, �2 and
finally �63. Let �r⇤ be the configuration inducing the minimum global error .

5. Find the zone z0 with the maximum relative error, i.e., z0 = argmaxz2{1,...,Z} ✏z(�r⇤) =���
PM

t=1

Qr⇤
z,t�

PM
t=1

Qz,t

���
PM

t=1

Qz,t
.

6. For zone z0, randomly generate Q configurations of �z factors (only for the corresponding to zone z).
Find the configuration inducing the minimum error, i.e., �q⇤z

= argminq2{1,...,Q} ✏z(�q). Modify �r⇤

by changing the coe�cients associated to zone z0 by �q⇤z
.

1
Note that the � factors are also di↵erentiated into two time windows; from 08:00 to 14:00, and from 14:01 to 07:59. This

allows to take into account the stationarity of both external conditions (e.g., temperature or radiation) and inner conditions

(e.g., number of users, inner loads, etc.)

2
We have chosen sets �1

, �2
, and �6

since preliminary experiments showed that these parameters had a stronger influence

on the performance of the proposed methodology.

3
This ordering is chosen based on the relative importance of the factors considered in energy consumption value.

4

The	accuracy	of	a	given	configura$on	of	such	factors	is	assessed:	

Rela$ve	error:	energy	consump$on	forecast	using	a	par$cular	factor	
seBng	βʹ	and	measured	energy	cosump$on	

Part II: Finding a good approxiation of Q In order to describe the optimization-based approach for
adjusting the � factors (which are crucial for the functioning of the whole framework), it is necessary to state
how to assess the accuracy of a given configuration of such factors. In the proposed scheme, two measures
are considered for this purpose.

For a given interval of time P (e.g., a 3-months season), let QP = (Q1, . . . ,Qz, . . . ,QZ) be a
collection of hourly energy consumption readings for each zone of the building, and let �T P =
(�T 1, . . . ,�T z, . . . ,�TZ) be a collection of hourly temperature di↵erence readings for each zone of the
building with respect to corresponding adjacent zones. Such readings are made during the interval of time P ,
and are divided into M periods. These readings can be obtained by meters, sensors or any other measuring
devise; alternatively, they might correspond to the output of a simulation performed in a software such as
TAS. Now, let Q0

P (�
0) be the energy consumption values computed by the proposed formula and using a

particular factor setting �01. The global error induced by �0 is given by

✏1(�
0) =

���
PM

t=1

PZ
z=1 Q

0
z,t �

PM
t=1

PZ
z=1 Qz,t

���
PM

t=1

PZ
z=1 Qz,t

,

i.e., the relative di↵erence between the real total energy consumption (
PM

t=1

PZ
z=1 Qz,t), and the total energy

consumption associated to �0 (
PM

t=1

PZ
z=1 Q

0
z,t). The value of ✏1(�

0) disregards the influence of having non-
homogeneous zones. Therefore, an alternative way of measuring the precision associated to �0 can be defined
a the following weighted error,

✏2(�
0) =

ZX

z=1

Qz

Q

MX

t=1

 ��Q0
z,t �Qz,t

��
Qz,t

!
,

where Q corresponds to the total energy consumption of the building, while Qz is the energy consumption of
zone z; according to the measurements in both cases. A particular vector �0 might induce a very small error
✏1(�

0) but a high error ✏2(�), or vice-versa. The goal of the algorithm is to find a vector �⇤ that provides a
good balance between ✏1(�

⇤) and ✏2(�
⇤). An outline of the adjusting algorithm is presented below.

1. Set convenient ranges for the values of the � factors. For instance, �z
1

2 [1, 10], 8z 2 Z, while
�z

3

2 [0, 1], 8z 2 Z. Note that this initial ranges are obtained by preliminary tests.

2. For a given interval of time P , randomly generate R di↵erent configurations (�1, . . . ,�r, . . . ,�R), so
that all zones receive the same factors. Calculate the total energy consumption associated to each of
these configurations, i.e., Q0

P (�
r) for each r 2 {1, . . . , R}.

3. For each �r, r 2 {1, . . . , R}, calculate ✏1(�r). Find �r⇤ = argminr2{1,...,R} ✏1(�r), i.e., the vector (or
vectors) inducing the minimum global error

4. Iteratively attempt to improve �r⇤ by performing (small) random perturbations on the values of the
parameters �1, �2, and �62. Such perturbations are performed in the lexicographic order �1, �2 and
finally �63. Let �r⇤ be the configuration inducing the minimum global error .

5. Find the zone z0 with the maximum relative error, i.e., z0 = argmaxz2{1,...,Z} ✏z(�r⇤) =���
PM

t=1

Qr⇤
z,t�

PM
t=1

Qz,t

���
PM

t=1

Qz,t
.

6. For zone z0, randomly generate Q configurations of �z factors (only for the corresponding to zone z).
Find the configuration inducing the minimum error, i.e., �q⇤z

= argminq2{1,...,Q} ✏z(�q). Modify �r⇤

by changing the coe�cients associated to zone z0 by �q⇤z
.

1
Note that the � factors are also di↵erentiated into two time windows; from 08:00 to 14:00, and from 14:01 to 07:59. This

allows to take into account the stationarity of both external conditions (e.g., temperature or radiation) and inner conditions

(e.g., number of users, inner loads, etc.)

2
We have chosen sets �1

, �2
, and �6

since preliminary experiments showed that these parameters had a stronger influence

on the performance of the proposed methodology.

3
This ordering is chosen based on the relative importance of the factors considered in energy consumption value.

4

A	par$cular	vector	βʹ	might	induce	a	very	small	error	ε1(βʹ)	but	a	high	error	
ε2(β’),	or	vice-versa.	The	goal	of	the	algorithm	is	to	find	a	vector	β∗	that	
provides	a	good	balance	between	ε1(β∗)	and	ε2(β∗).	

Rela$ve	error	per	zone	



Preliminary results

•  106 multipliers combinations

•  105 multipliers combinations for each zone

•  Less than two hours computation

•  Algorithm tested first using building modeling software TAS, 
less than 1% deviation

•  Algorithm being tested in a building



Preliminary results (comparison with TAS)



Case Study



Preliminary results (Real)
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Preliminary results (Real)
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